• Открыта тема на форуме - Трансляция видео с веб камер Хабаровска
  • Добавлена в библиотеку новая тема - История государства и права зарубежных стран
  • Добавлена новая игра - Именем короля
  • Добавлена веб камера набережная Хабаровска
Место для вашей рекламы.

Модели геометриии Лобачевского


Модели геометриии Лобачевского Введение
Геометрия – один из древнейших разделов математики. Наибольшего развития геометрических знаний достигли древневосточные цивилизации – Египет, Вавилон, Индия, Китай. Говорить о геометрии как науке на этой стадии нельзя – это была эпоха предварительного накопления геометрических сведений. В VII в. до н.э. благодаря торговле геометрические знания достигли Греции. Здесь геометрия получила широкое развитие, которое можно разделить на три периода. Цель данной работы: рассмотреть модели геометрии Лобачевского. Задачи: Рассмотреть историю становления геометрии. Рассмотреть процесс создания неевклидовой геометрии. Рассмотреть плоскость Лобачевского. Расссмотреть пространство Лобачевского. Рассмотреть тригонометрию Лобачевского. 1. Исторический обзор развития геометрии
Основными периодами развития геометрии были следующие: 1. (VII – VI в. до н. э.) Период является поворотным в развитии геометрии, основателем и представителем этого периода является Фалес Милетский. Греки впервые стали логически доказывать предложения геометрии в общем виде. Фалесу приписывают доказательство следующих теорем: — угол, вписанный в полуокружность, прямой. — вертикальные углы равны. — углы при основании равнобедренного треугольника равны между собой. и др. Это достижение греческих математиков имело важнейшее значение в развитии геометрии, т. к. общее доказательство охватывало все возможные частные случаи. Постепенно выделялись немногие первоначальные предложения, которые получены из опыта и должны быть положены в основу геометрии без логического доказательства. Было заложено начало созданию дедуктивного, или аксиоматического метода изложения геометрии. 2. (VI – V в. до н. э.) – олицетворяется Пифагором и его школой. Пифагору предписывают доказательство следующих предложений: — сумма внутренних углов треугольника равна двум прямым углам; — плоскость можно покрыть правильными треугольниками, четырехугольниками и шестиугольниками; — известная теорема Пифагора; — открытие геометрического способа решения квадратных уравнений; — открытие пяти правильных многогранников; Но самым важным открытием школы Пифагора явилось открытие несоизмеримых отрезков. До этого открытия греки считали, что отношение двух любых отрезков может быть выражено рациональным числом. Это явилось кризисом в развитии греческой математики, основное положение философии школы Пифагора, что «число есть мера вещей» потерпело поражение, а подняться до понятия иррационального числа они не сумели. Также разработка многих вопросов геометрии неизбежно приводила греческих математиков и философов к понятиям бесконечности и движения, к учению о бесконечно малых. К таким вопросам относились приближенные вычисления несоизмеримых величин, рассмотрение вопросов связанных со спрямлением окружности и квадратурой круга; вычисление объема поверхностей круглых тел и т. д. При этом греческие математики натолкнулись на глубокие противоречия и парадоксы, все это вызвало критику и споры среди философов. Нужно было сделать геометрию неуязвимой и при этом считалось, что это возможно лишь без привлечения понятий иррационального числа, бесконечности, движения. 3. (IV в. до н. э.) Философские школы в Афинах Платона и Аристотеля. С этими школами связывают два основных достижения: — выработку принципов научного построения геометрической системы, расчленение ее предложений на аксиомы, теоремы и определения; — разработку определенных методов и форм доказательства: анализ, синтез, доказательство от противного. Таким образом, до III в. до н. э. геометрия в Греции накопила обильный фактический материал, назрела необходимость в его систематизации. Эта задача наиболее полное и совершенное разрешение получила в созданных Евклидом «Началах». Начался новый период развития геометрии.Безуспешные поиски доказательства 5-го постулата сыграли ту положительную роль, что помогли глубже проникнуть в структуру геометрии, уяснить взаимную связь её важнейших предложений. Эти попытки подготовили почву для возникновения у передовых учёных предположения, что 5-ый постулат недоказуем при помощи остальных аксиом геометрии Евклида. Неевклидова геометрия появилась вследствие долгих попыток доказать V постулат Евклида, аксиому параллельности. Эта геометрия во многому дивительна, необычна и соответствует нашим привычным представлениям ореальном мире. Но в логическом отношении данная геометрия не уступаетгеометрии Евклида.Здесь повторилось замечательное явление, неоднократно наблюдавшееся в истории науки вообще и математики в частности, когда достаточно созревшие новые идеи возникали у нескольких учёных одновременно. Это обстоятельство весьма красочно выражено в одном из писем Ф. Бояи к своему сыну Я. Бояи: «Как весной сразу всюду появляются фиалки, так и для научных открытий бывают эпохи, когда одни и те же мысли вспыхивают у учёных в разных местах». В течении первых же десятилетий XIX в. проблема 5-го постулата была решена несколькими лицами почти одновременно и независимо друг от друга, но совершенно не так, как предполагали это прежние учёные: была создана новая геометрия, независимая от 5-го постулата, основанная на замене его утверждением, эквивалентным гипотезе острого угла Саккери. «Начала» Евклида служили на протяжении более 2000 лет образцом строгого дедуктивного изложения геометрии. Однако в 19 веке после открытия геометрии Лобачевского – Бояй, а затем геометрии Римана и в связи с пересмотром основ математического анализа, предпринятого Больцано, Каши, Абелем Гауссом и другими учеными, логическое построение «Начал» Евклида стало подвергаться критике. В системе построения было обнаружено много логических дефектов, часть которых была заменена еще в древности. Это касается в первую очередь основных понятий геометрии и евклидовых определений. Определение нового понятия состоит в раскрытии его содержания в перечислении его существенных признаков (свойств) с помощью других ранее определенных понятий и т.д. В конце концов, мы должны дойти до некоторых, обычно самых простых и немногих понятий, которые являлись исходными, уже логически прямо не определяются, а принимают за основные понятия. Без выделения основных понятий операция логического определения всех других понятий вообще была бы бессмысленной. Определения, изложенные в «Началах» Евклида, не удовлетворяют требованиям современной науки. 2. Создание неевклидовой геометрии
К открытию новой, так называемой «неевклидовой», геометрии пришли три человека: 1) профессор Казанского университета Николай Иванович Лобачевский (1792–1856); 2) великий немецкий математик Карл Фридрих Гаусс (1777–1855); 3) венгерский офицер Янош Бояи (1802–1860). Однако вклад в создание новой геометрии, сделанный этими учёными, весьма неравноценен. Что касается Гаусса, то он совершенно не оставил никаких следов систематического изложения своих открытий в области неевклидовой геометрии и при жизни не опубликовал ни одной строчки по этому вопросу. Гаусс слишком боялся уронить свой огромный авторитет в глазах учёного мира. Янош Бояи пришёл к открытию неевклидовой геометрии в 1823 г., будучи в возрасте 21 года, но опубликовал свои результаты в 1832 г. (позже Лобачевского) в виде приложения к учебнику математики «Опыт введения учащегося юношества в начала чистой математики», изданному его отцом Ф. Бояи. Но, непонятый своими современниками, встретивший сдержанное, нечуткое отношение со стороны Гаусса, он впал в глубокое отчаяние. Больше ни одного произведения по новой геометрии Я. Бояи не опубликовал. Остаток жизни он трагически провёл в нужде, неизвестности и полном одиночестве, пережив и Гаусса, и Лобачевского. Однако всё сделанное в области геометрии Гауссом и Я. Бояи представляет собой лишь первые шаги по сравнению с глубокими и далеко идущими исследованиями Лобачевского, который всю жизнь упорно и настойчиво разрабатывал с разных точек зрения своё учение, довёл его до высокой степени совершенства и опубликовал целый ряд крупных сочинений по новой геометрии. Поэтому как с формальной стороны (первое по времени опубликование открытия в 1826 г.), так и по существу первое место среди лиц, разделяющих славу создания неевклидовой геометрии, следует безраздельно отвести Н. И. Лобачевскому, имя которого и носит созданная им геометрия. Следует указать ещё на двух лиц, пришедших к идеям новой геометрии: 1) Ф. К. Швейкарт (1780–1859), профессор права в Харьковском университете с 1812 по 1817 г. и 2) его племянник Тауринус (1794–1874). Однако они дали лишь самые беглые наброски новой геометрии. Это объясняется тем, что к этому времени самим развитием математики была подготовлена почва к правильному восприятию и пониманию идей Лобачевского и к их дальнейшему углублению и развитию. 3. Доказательства пятого постулата
Одним из ученых, предвосхитивших неевклидову геометрию, был итальянский монах Джироламо Саккери (1667-1733), преподававший грамматику в иезуитской коллегии в Милане. Здесь под влиянием Джованни Чевы ( Джованни Чева (1648-1734) – итальянский инженер-гидравлик и экономист) Саккери заинтересовался математикой и стал серьезно заниматься ею. Впоследствии он преподавал математику в университете города Павши. На последнем году своей жизни Саккери опубликовал (на латинском языке) книгу под заглавием «Евклид, очищенный от всех пятен». В ней он поставил перед собой задачу исправить все недостатки («пятна») «Начал» Евклида, в первую очередь доказать V постулат. Саккери решительнее и дальше своих предшественников сделал попытку доказать этот постулат от противного. Этот путь он не сумел проделать до конца, но идя по нему, Лобачевский а последствии открыл неевклидову геометрию. Рассматривая четырехугольник, носящий его имя, Саккери стремится доказать, что гипотезы тупого и острого углов приводят к логическим противоречиям и что остается лишь гипотеза прямого угла, из которой вытекает евклидов V постулат. Он легко опровергает гипотезу тупого угла, он доказывает, что: 1. геометрическое место точек плоскости, равноотстоящих от данной прямой по одну сторону, не является прямой или окружностью, а другой линией (которую Лобачевский впоследствии назвал эквидистантой, то есть «равноотстоящей»); 2. две прямые, содержащиеся в одной плоскости, либо пересекаются в одной точке (такие прямые Лобачевский назвал «сходящимися»), либо не пересекаются, имея общий перпендикуляр, по обе стороны от которого они друг от друга удаляются («расходящиеся прямые» в терминологии Лобачевского), либо не пересекаются, удаляясь друг от друга в одном направлении и асимптотически приближаясь в другом (параллельные Лобачевского). Если бы Саккери пользовался лишь логическими выводами, строгой дедукцией, то никакого противоречия он в указанных выше предложениях не нашел бы. Однако, будучи предубежден о невозможности того, что для евклидова постулата не имелось доказательства, Саккери для опровержения гипотезы острого угла прибег к утверждению чисто интуитивного характера: существование асимптотических прямых якобы «противоречит природе прямой линии». Заслуга Саккери состоит, разумеется, не в конечном его установлении промежуточных предложений, выведенных им на основе гипотезы острого угла, которые 100 лет спустя легли в основу новой неевклидовой геометрии Лобачевского. К числу предшественников последнего, следует отнести и члена Берлинской Академии наук – астронома, математика и философа Иогана Генриха Ламберта, считавшего себя Швейцарским ученым и писавшего одни из своих произведений на французском языке. Другие – на немецком. В опубликованном после его смерти произведении «Теория параллельных линий»(1786) Ламберт рассматривает четырехугольник. И исследует, как и Саккери, возможные при этом три гипотезы. Он получает ряд новых результатов геометрии, построенной на гипотезе острого угла, то есть будущей неевклидовой геометрии Лобачевского, в том числе и следующий: если сумма углов треугольника АВС, как известно, меньше двух прямых углов, равна 2d - , то площадь треугольника пропорциональна - «дефект треугольника»). В отличие от Саккери Ламберт в своих рассуждениях нигде не отступает от строгой дедукции, и поэтому он не находит противоречия в гипотезе острого угла и признает тщетность всех попыток доказать V постулат. Не смотря на это, однако, Ламберт, как и его предшественники, не считал гипотезу острого угла действительно возможной. На таких же позициях стоял и знаменитый французский математик А.М. Лежандр (1752- 1833), значительно способствовавший своими многочисленными попытками доказать евклидову аксиому параллельности, привлечению внимания математиков первой половины 19 в. к проблеме V постулата. Попытки доказательства V постулата принесли большую пользу в том отношении, что выяснили, какие теоремы геометрии относятся на этот постулат и какие от него не зависят. Совокупность теорем геометрии, не зависящих от евклидовой аксиомы параллельности, венгерский математик Янош Бояй назвал «абсолютной» геометрией. Все же остальные теоремы, то есть те, при доказательстве которых мы непосредственно или косвенно основываемся на V постулате, составляет собственно евклидову геометрию. В отношении геометрических построений следует иметь в виду, что к задачам абсолютной геометрии принадлежит построение треугольника по трем его сторонам или по двум сторонам и углу между ними, проведение перпендикуляра из точки на прямой к данной прямой. Не опираясь на V постулат можно решить также задачу о проведении касательной к данной окружности из внешней точки. Только в целях упрощения эта задача решается в учебниках при помощи аксиомы параллельных Евклида. На постулат Евклида опираются почти все задачи, содержащие в условии понятия площади и параллельности. Два тысячелетия бесплодных усилий и крушений всех попыток (в том числе и своей собственной, основанной на методе приведения к абсурду) доказать V постулат, привели Лобачевского к мысли о том, что этот постулат не зависит от других аксиом евклидовой геометрии, то есть из них не вытекает, и поэтому его доказать нельзя. Но если V постулат не зависит от других аксиом, то допуская все другие аксиомы (абсолютной геометрии), мы можем принять или не принять евклидов постулат. В первом случае мы получаем известную классическую евклидову геометрию, названную Лобачевским "употребительной”. Если же вместо евклидовой аксиомы параллельности принять другую, ей не эквивалентную, получим новую, неевклидову геометрию. Лобачевский и сформулировал новую аксиому параллельных, прямопротивоположную аксиоме Евклида: "Через точку вне прямой можно провести не только одну прямую, не встречающую данной прямой, а по крайней мере две”. Заменив этой аксиомой V постулат Евклида, Лобачевский разработал свою неевклидову геометрию, которая оказалась такой же логически безупречной, правильной, как и геометрия Евклида. 4. Плоскость в геометрии Лобачевского
Исходным пунктом геометрии Лобачевского является принятие всех предложений геометрии Евклида, не зависящих от 5-го постулата (то есть абсолютной геометрии, включая аксиомы Паша, Архимеда, Дедекинда), и присоединение к ним взамен отброшенного 5-го постулата следующей аксиомы, противоположной аксиоме Плейфера, а значит, и 5-му постулату. Через точку, лежащую вне прямой в плоскости, определяемой ими, можно провести не менее двух прямых, не пересекающих данной прямой. Заметим, что существование хотя бы одной прямой, проходящей через данную точку и не пересекающей данной прямой, есть факт абсолютной геометрии. Аксиома Лобачевского утверждает существование по крайней мере двух таких прямых. Отсюда немедленно следует, что таких прямых существует бесконечное множество. Плоскость, в которой предполагается выполнение аксиомы Лобачевского, называется плоскостью Лобачевского. Заметим также, что геометрию Лобачевского называют гиперболической геометрией, в соответствии с чем плоскость и пространство Лобачевского называются гиперболическими. Основная теорема. Пусть в плоскости даны прямая a и не лежащая на ней точка A. Тогда в пучке прямых с центром в точке A существуют две пограничные прямые, разделяющие все прямые пучка на два класса: на класс прямых, пересекающих a, и класс прямых, не пересекающих a. Эти граничные прямые сами не пересекают a. Рис.1 Всё сказанное приводит нас к следующей картине расположения прямых пучка с центром в точке A, взятой вне данной прямой BB'. В этом пучке существуют две граничные прямые CC' и DD' (рис.1), симметрично расположенные относительно перпендикуляра AP, опущенного из точки A на BB', и образующие с ним ےCAP=ےD'AP=α< . Эти прямые, а также все прямые пучка, проходящие внутри заштрихованных вертикальных углов CAD и C'AD', не пересекают прямой BB', а все прямые пучка, проходящие внутри вертикальных углов CAD' и C'AD, пересекают BB'. Две граничные прямые CC' и DD' называются параллельными прямой BB' в точке A, причём прямая C'C называется параллельной B'B в направлении B'B, а прямая DD' называется параллельной прямой BB' в направлении BB'. Острый угол α, образуемый параллельными с перпендикуляром AP, называется углом параллельности в точке A относительно прямой BB'. Этот угол есть функция длины p перпендикуляра AP и обозначается так: α=П(p). AP называется отрезком параллельности в точке A относительно прямой BB'. Основная формула геометрии Лобачевского, устанавливающая зависимость между длиной отрезка и отвечающим ему углом параллельности, имеет вид: Все прямые пучка, не пересекающие BB' и лежащие внутри заштрихованных вертикальных углов, называются расходящимися с BB' или сверхпараллельными к BB'; угол, образуемый такой прямой с перпендикуляром AP с обеих от него сторон, больше угла параллельности α. Наконец, все остальные прямые пучка, образующие с AP с какой-либо стороны острый угол, меньший угла параллельности α, называются пересекающими прямую BB' или сходящимися с BB'. Определение. Прямая C'C называется параллельной прямой B'B в направлении B'B (рис.2) в точке A, если, во-первых, прямая C'C не пересекает прямой BB', во-вторых, C'C является граничной в пучке прямых с центром в точке A, то есть всякий луч AE, проходящий внутри угла CAD, где D – любая точка прямой BB', пересекающей луч DB. Рис.2 Замечание. Из вышеизложенного ясно, что через точку A, лежащую вне прямой BB', можно провести в каждом из двух направлений лишь единственную параллельную Лобачевского к прямой BB', то есть каждому значению длины перпендикуляра p соответствует вполне определённое значение угла параллельности α. 5. Пространство в геометрии Лобачевского Пространство, в которой предполагается выполнение аксиомы Лобачевского, называется пространством Лобачевского. В пространстве Лобачевского параллельность и расходимость прямых, а также прямой и плоскости, определяется следующим образом: Определение. Две прямые в пространстве называются параллельными (расходящимися), если они лежат в одной плоскости и в этой плоскости они параллельны (расходятся). Определение. Прямая a называется параллельной плоскости α, если она параллельна своей проекции на эту плоскость. Определение. Прямая a называется расходящейся с плоскостью α, если она расходится со своей проекцией на эту плоскость. Из последних определений немедленно следует, что прямая, параллельная плоскости, неограниченно сближается с последней в сторону параллельности, а прямая, расходящаяся с плоскостью, имеет с этой плоскостью единственный общий перпендикуляр, в обе стороны от которого в проектирующей плоскости прямая неограниченно удаляется от плоскости. Взаимное расположение прямых и плоскостей в пространстве Лобачевского вполне характеризуется при помощи так называемого конуса параллельности, являющегося аналогом понятия угла параллельности. Рис.3 Пусть дана плоскость α и не лежащая на ней точка A (рис. 3). Пусть AA' – перпендикуляр к α, проектирующий точку A в точку A' на плоскости α. Пусть далее AB – прямая, параллельная плоскости α, и A'B' – её проекция на α. Тогда угол BAA' есть угол параллельности в точке A прямой AB относительно прямой A'B'. Будем вращать прямую AB около перпендикуляра AA', тогда AB опишет круглую коническую поверхность с вершиной в точке A, все образующие которой параллельны плоскости α. Эта поверхность называется конусом параллельности в точке A относительно плоскости α. Таким образом, конусом параллельности в точке A относительно плоскости α называется геометрическое место всевозможных прямых, параллельных плоскости α в точке A. Из этого определения ясно, что всякая прямая, проходящая через точку A и лежащая внутри конуса параллельности, пересекает плоскость α, а всякая прямая, проходящая через точку A и лежащая вне конуса параллельности, расходится с плоскостью α. Конус параллельности в точке A позволяет все плоскости, проходящие через точку A, разбить на три категории: 1) плоскости, пересекающие конус по двум образующим, 2) плоскости, касающиеся конуса по образующей, 3) плоскости, имеющие с конусом лишь одну общую точку A. Плоскости 1-й категории содержат прямые, проходящие через A и лежащие внутри конуса параллельности, а потому эти плоскости пересекают плоскость α. При этом прямая пересечения с плоскостью α параллельна в противоположных направлениях проекциям образующих, по которым плоскость 1-й категории пересекает конус параллельности. Плоскости 2-й и 3-й категории не содержат прямых, проходящих внутри конуса параллельности, а потому не могут пересекаться с плоскостью α. Определение. Плоскость, проходящая через точку A, называется сходящейся с плоскостью α, параллельной плоскости α, или расходящейся с плоскостью α, смотря по тому, будет ли эта плоскость пересекать конус параллельности в точке A по паре образующих, или будет касаться конуса по образующей, или не будет иметь с конусом общих прямых. В плоскости Лобачевского через точку, лежащую вне прямой, проходят две прямые, параллельные данной. В пространстве Лобачевского через точку, лежащую вне плоскости, можно провести бесконечное множество прямых, параллельных данной плоскости, это и будут образующие конуса параллельности. 6. Элементы тригонометрии в геометрии Лобачевского
Построение обыкновенной тригонометрии в плоскости Евклида основано на существовании подобных треугольников. Это позволяет ввести тригонометрические функции, зависящие только от величины угла, но не зависящие от длины сторон угла. Так как в плоскости Лобачевского подобных фигур не существует, то в ней обыкновенная тригонометрия не применима. На основании признаков равенства прямоугольных треугольников в абсолютной геометрии и в силу отсутствия подобия треугольников в геометрии Лобачевского заключаем, что прямоугольный треугольник вполне определяется любыми двумя элементами из следующих пяти: a, b, c, A, B, где a, b –катеты, с – гипотенуза, A, B – острые углы, противолежащие соответственно катетам a и b (рис. 4). Поэтому формулы должны дать возможность по данным двум элементам прямоугольного треугольника вычислить остальные три. Каждая формула должна содержать три элемента, чтобы можно было определить один из них через остальные два. Учитывая связь между гиперболическими функциями сторон и тригонометрическими функциями соответствующих углов параллельности: где k – постоянная Лобачевского, можно получить зависимости между заданными элементами прямоугольного треугольника, выраженные через гиперболические функции сторон или тригонометрические функции соответствующих углов параллельности. Рис.4 Приведем сводку всех возможных формул для прямоугольного треугольника. 1. Аналог теоремы Пифагора: 2. Решения прямоугольного треугольника: Составление рассмотренных формул подчиняется правилу. Каждый из элементов прямоугольного треугольника a, b, c, A, B имеет два прилежащих элемента (см. рис 4) (при этом угол С пропускается), остальные два элемента будут неприлежащими. Это изображено на рисунке 2. Тогда правило составления формул прямоугольного треугольника, выраженных в гиперболических функциях, можно сформулировать следующим образом: Длины сторон входят под знаки гиперболических функций, а величины углов – под знаками тригонометрических. Косинус элемента равен произведению синусов неприлежащих элементов либо котангенсов прилежащих, причем если под знак функции входит катет, то функцию надо заменить кофункцией (т. е. синус – косинусом и обратно, тангенс – котангенсом и обратно). Рис.5 Для составления же формул, содержащих функции углов параллельности, следует воспользоваться схемой рисунка 6. Тогда правило таково: Синус любой из величин, указанных в схеме, равен произведению тангенсов прилежащих величин либо косинусов неприлежащих величин. 7. Значение геометрии Лобачевского
После того, как стало известно, что Гаусс считал геометрию Лобачевского логически вполне правильной, «неевклидова геометрия»(названная так именно Гауссом), привлекла к себе внимание многих математиков. Произведения Лобачевского и «Appendix» Бояй были переведены на французский, итальянский и другие языки. Однако, выявилось много противников неевклидовой геометрии, которые отнеслись к ней с недоверием, утверждая, что она представляет собой сплошную фантазию, нелепость, которая рано или поздно будет обнаружена. Положение коренным образом изменилось, когда итальянский математик, профессор римского университета Эудженио Бельтрами (1835-1900) нашел модель для неевклидовой геометрии, показав в своей работе «Опыт интерпретации неевклидовой геометрии»(1868г.), что наряду с плоскостями, на которых осуществляется евклидова геометрия, и сферическими поверхностями, на которые действуют формулы сферической геометрии, существуют и такие реальные поверхности, названные им псевдосферами , на которых частично осуществляется планиметрия Лобачевского. Известно, что сферу можно получить вращением полуокружности вокруг своего диаметра. Подобно тому, псевдосфера образуется вращением линии FCE, называемой трактрисой, вокруг ее оси АВ .Итак, псевдосфера – это поверхность в обыкновенном реальном пространстве, на котором выполняются многие аксиомы и теоремы неевклидовой планиметрии Лобачевского. Например, если начертить на псевдосфере треугольник, то легко усмотреть, что сумма его внутренних углов меньше 2d. Сторона треугольника – это дуги псевдосферы, дающие кратчайшее расстояние между двумя ее точками и выполняющие ту же роль, которую выполняют прямые на плоскости. Эти линии, называемые геодезическими, можно получить, зажав туго натянутую и политую краской или мелом нить, в вершинах треугольника. Таким образом, для планиметрии Лобачевского была найдена реальная модель - псевдосфера. Формулы новой геометрии Лобачевского нашли конкретное истолкование. Ими можно было пользоваться, например, для решения псевдосферических треугольников. Таковы некоторые из основных идей и фактов геометрии Лобачевского. После работы «О началах геометрии», появились в свет и другие произведения Лобачевского по неевклидовой геометрии: «Воображаемая геометрия» (1835), «Применение воображаемой геометрии к некоторым интегралам» (1836), «Новые начала геометрии с полной теорией параллельных», опубликованные в «Ученых записках Казанского университета» в 1835-1838г.г., «Геометрические исследования по теории параллельных» (опубликованы впервые в1840г. в Берлине на немецком языке). Однако идеи Лобачевского были настолько революционными и до того опередили свой век, что не могли быть понятыми даже крупными математиками того времени. Поэтому новая геометрия не была признана современниками, была встречена с полным равнодушием и даже с иронией. Ее многие считали сплошной фантазией, а ее автора чудаком или даже невеждой. Одинокий Лобачевский не отказался от своих идей. Он твердо был убежден в логической правильности неевклидовой геометрии. Чтобы можно было это доказать, Лобачевский предпринимал астрологические наблюдения, и производил измерения углов космических треугольников, стороны которых измерялись расстояниями от Земли до небесных тел, в надежде установить, равна ли сумма углов треугольника 2dили она меньше двух прямых углов. Другую модель геометрии Лобачевского построил в 1882г. французский математик Анри Пуанкаре (1854-1912), применивший ее к решению некоторых важных задач теории функций комплексного переменного. Одним из важнейших результатов открытия геометрии Лобачевского (называемой также гиперболической геометрией) было развитие новых неевклидовых геометрий, в первую очередь, геометрии Римана (в узком смысле), называемой так же эллиптической геометрией. В качестве модели планиметрии Римана может служить сфера, если считать каждую пару диаметрально противоположных ее точек за одну «точку». Лобачевский указывал но связь геометрии с физикой, и хотя его измерения углов с треугольника с громадными астрономическими размерами показали еще справедливость евклидовой геометрии, на самом деле, как оказалось позже, поправки, полученные в рамках теории, основанной именно на неевклидовой геометрии, оказались заметными даже внутри планетной системы, объяснив знаменитую аномалию движения Меркурия, обнаруженную в XIX столетии Леверье. Неевклидова геометрия сыграла огромную роль во всей современной математике, и фактически в теории геометризованной гравитации марселя Гросмана-Гильберта-Эйнштейна(1913-1915). Довольно неожиданно, еще раньше была установлена вязь кинематики Лоренца-Пуанкаре с геометрией Лобачевского. В 1909 году Зоммерфельд показал, что закон сложения скоростей данной кинематики связан с геометрией сферы мнимого радиуса (подобное соотношение уже отмечали Лобачевский и Бояйи). В 1910 году Варичак указал на аналогию данного закона сложения скоростей и сложения отрезков на плоскости Лобачевского. Предположение Лобачевского, что реальные геометрические отношения зависят от физической структуры материи, нашло подтверждение не только в космических масштабах. Современная теория квант все с большей настоятельностью выдвигает необходимость применения геометрии, отличной от евклидовой, к проблемам микромира. Однако, измерения не могли дать определенного результата в силу их приближенного характера. Лобачевский всю жизнь искал оправдания своей геометрии в механике и астрономии и не переставал верить, что торжество его идей неминуемо. В 1855г. умирает Гаусс, единственный крупный ученый, сумевший оценить Лобачевского по достоинству при его жизни, хотя и не решившись выступить публично в защиту новой геометрии. В этом же году, Лобачевский, которого постоянное умственное напряжение и тяжелые переживания, перенесенные в борьбе за признание своих идей, довели до потери зрения, диктует последнее свое произведение «Пангеометрия». Лобачевский умер в 1856 г. непризнанным, почти забытым. В русской научной и научно-популярной литературе, как и в литературе многих других стран, имеется немало сочинений, посвященных неевклидовой геометрии Лобачевского. Изучение геометрии Лобачевского составляет обязательную часть программы математических отделений большинства наших университетов и всех педагогических институтов -- ознакомление с основами этой геометрической системы считается необходимой частью подготовки будущего учителя средней школы. Также и в школьных математических кружках широко культивируются занятия геометрией Лобачевского. При обсуждении путей перестройки математического образования в средней школе некоторыми математиками и педагогами высказывалась даже мысль о желательности включения элементов геометрии Лобачевского в общеобязательную школьную программу, а в рекомендуемые программы факультативных занятий математикой в средней школе (т.е. необязательных занятий, которые, однако, должны носить массовый характер) была включена тема, связанная с неевклидовой геометрией Лобачевского. Причины столь широкого увлечения геометрией Лобачевского понять нетрудно. Разумеется, увлечение это никак не связано с общематематическими или естественнонаучными приложениями геометрии Лобачевского: приложения эти (к теории автоморфных функций, например) носят достаточно специальный характер, и встретиться с ними придется разве что одному из тысячи учащихся, добросовестно изучающих (а затем излагающих экзаменатору) определение параллельных по Лобачевскому и особенности взаимного расположения прямых на плоскости Лобачевского. Гораздо более важное и принципиальное значение имеет сам факт "неединственности" геометрии, существования разных геометрических систем: он проливает новый свет на основные особенности математической науки; на роль идеализации в научном естествознании; на общее понятие дедуктивной науки, т.е. науки, развиваемой исходя из определенной системы аксиом; на роль системы аксиом в математике и на предъявляемые к любой аксиоматике требования; на взаимоотношение двух аспектов геометрии -- геометрии как абстрактной математической дисциплины и геометрии как естественнонаучной дисциплины, изучающей определенную категорию свойств окружающего нас реального пространства, так сказать, "геометрии-математики" и "геометрии-физики". Заключение
Таким образом в нашей работе мы рассмотрели историю развития геометрии. К III в. до н. э. геометрия в Греции накопила обильный фактический материал, назрела необходимость в его систематизации. Эта задача наиболее полное и совершенное разрешение получила в созданных Евклидом «Началах». Также нами был рассмотрен процесс создания неевклидовой геометрии. К открытию новой, так называемой «неевклидовой», геометрии пришли три человека: профессор Казанского университета Николай Иванович Лобачевский (1792–1856), великий немецкий математик Карл Фридрих Гаусс (1777–1855), венгерский офицер Янош Бояи (1802–1860). Были рассмотрены вопросы о пространстве, плоскости в геометрии Н.И.Лобачевского, а также основные элементы тригонометрии в понимании Лобачевского. Геометрия Лобачевского так и не была понята и оценена при жизни самого учёного. Но уже через десятилетие после смерти Лобачевского его открытие привлекло всеобщее внимание математических кругов и послужило могучим стимулом к коренному пересмотру взглядов на основания геометрии/ В 1826 г. на заседании отделения физико-математических наук Лобачевский доложил о своем сочинении "Сжатое изложение основ геометрии со строгим доказательством теоремы о параллельных". Изданная в 1829 г. эта работа стала началом неэвклидовой геометрии, получившей дальнейшее развитие в таких трудах Лобачевского, как "Воображаемая геометрия" /1835/, итоговая "Пангеометрия" /1855/ и др. Часть сочинений Лобачевского была опубликована на немецком и французском языках за границей, однако и зарубежными, и отечественными математиками труды ученого были признаны и оценены лишь после смерти Лобачевского, когда началась (прежде всего, Б.Риманом) активная разработка неэвклидовых геометрий. Список литературы
1. Александров Г.С. Несколько слов по поводу Лобачевского.// Квант.–1996–№5–С.3-8. 2. Каган В.Ф. Лобачевский и его геометрия.–М.: Гостехиздат, 1955.–237с. 3. Кельман Э. Великий русский мыслитель Н.И.Лобачевский.–М.: Гостехиздат, 1955–245с. 4. Об основаниях геометрии.Сборник классических работ по геометрии Лобачевского и развитию ее /Под ред. А.П.Нордина.-М.: Техкнига.-2001–264с. 5. Соловьев Ю.П. Н.И.Лобачевский // Квант–1992–№11–С.2-11.


Категория: Общая | Добавил: Admin (24.07.2011)
Просмотров: 2686 | Рейтинг: 0.0/0
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Реклама
Место для вашей рекламы.
Возможно вам будет интерестно также информация ниже:
Реклама
Вход на сайт
Категории раздела
  • Игрушки
  • Библиотека
  • Статистика

Рейтинг@Mail.ru Яндекс.Метрика
Онлайн всего: 1
Гостей: 1
Пользователей: 0
Реклама